Meadowhead Community Infant School and Nusery

Calculation Policy

This policy has been largely adapted from the White Rose Maths Hub Calculation Policy with further material added. It is a working document and will be revised and amended as necessary. Progression within each area of calculation is in line with the programme of study in the 2014 National Curriculum. This calculation policy should be used to support children to develop a deep understanding of number and calculation. This policy has been designed to teach children through the use of concrete, pictorial and abstract representations.

Teaching for Mastery

At the centre of the mastery approach to the teaching of maths is the belief that all children have the potential to succeed. They should have access to the same curriculum content and, rather than being extended with new learning, they should deepen their conceptual understanding by tackling challenging and varied problems. Similarly, with calculation strategies, children must not simply rote learn procedures but demonstrate their understanding of these procedures through the use of concrete materials and pictorial representations. This policy outlines the different calculation strategies that should be taught and used across the school, which is in line with the requirements of the 2014 Primary National Curriculum.

Mathematical Language

The 2014 National Curriculum is explicit in articulating the importance of children using the correct mathematical language as a central part of their learning (reasoning). In certain year groups, the non-statutory guidance highlights the requirement for children to extend their language around certain concepts. It is therefore essential that teaching using the strategies outlined in this policy is accompanied by the use of appropriate and precise mathematical vocabulary. New vocabulary should be introduced in a suitable context (for example, with relevant, real objects, apparatus, pictures of diagrams) and explained carefully. High expectations of the mathematical language used are essential, with teachers only accepting what is

C.P.A Calculation Policy

This policy has been designed to teach children through the use of concrete, pictorial and abstract methods. This calculation policy should be used to support children to develop a deep understanding of number and calculation.

Using the Concrete-Pictorial-Abstract Approach: Children develop an understanding of a mathematical concept through the three steps of: concrete, pictorial and abstract approach. Reinforcement is achieved by going back and forth between these representations.

Concrete Representation: This is the first step in a child's learning. The child is introduced to an idea or skill by acting it out with real objects. This is a 'hands on' component using real objects and it is the foundation for conceptual understanding.

Pictorial Representation: Once the child has sufficiently understood the 'hands on' experience, they can be progressed onto relating them to pictorial representations, such as a diagram or a picture of the problem.

Abstract Representation: This is the third step in a child's learning. The child should now be capable of representing problems by using mathematical notation, for example: 12 ÷ 2 = 6

Nursery and Reception

Addition	Subtraction	Multiplication	Division
Children are encouraged to gain a	Children are encouraged to gain a sense of	Children use concrete objects to	Children use concrete objects to count
sense of the number system through	the number system through the use of	make and count equal groups of	and share equally into 2 groups.
the use of counting concrete objects.	counting concrete objects.	objects.	
They combine objects in practical ways and count all.	They understand subtraction as counting out.	They understand doubling as repeated addition. 2 + 2 = 4.	6 cakes shared between 2 people each person gets 3 cakes. 6 ÷2 = 3 They count a set of objects and halve them by making two equal groups.
on and will count on in ones and twos using objects, cubes, bead string and number line. They use concrete	They begin to count back in ones and twos using objects, cubes, bead string and number line.	They use concrete and pictorial representation to record their calculations.	They understand sharing and halving as dividing by 2. They will begin to use objects to make groups of 2 from a given amount.
representation to record their calculations. They begin to use + and = They are encouraged to develop a	They use concrete and pictorial representation to record their calculations. They begin to use - and = $-1 = -$ -1 = - -1 = -	5 + 5 = 10	
mental picture of the number system in their heads to use for calculations. Higher attaining children may be able	They are encouraged to $-1 = \bigcirc$ develop a mental picture of the number system in their heads to use for calculations.	Higher attaining children may be able to represent their calculations using symbols and numbers within a	They use concrete and pictorial representation to record their calculations.
to represent their calculations using symbols and numbers within a written calculations.	Higher attaining children may be able to represent their calculations using symbols and numbers within a written calculation.	written calculation.	Higher attaining children may be able to represent their calculations using symbols and numbers within a written calculation.

Objective & Strategy	Concrete	Pictorial	Abstract
Combining two parts to make a whole: part- whole model	Use part part whole model. Use cubes to add two numbers together as a group or in a bar.	3 yart yhole 2 y b Bally 2 Balls B Bally 2 Balls 1 B 1 B 1 C C C C C C C C C C C C C C C C C C C	4 + 3 = 7 5 3 $10 = 6 + 4$ Use the part-part whole diagram as shown above to move into the abstract.
Starting at the big- ger number and counting on	Start with the larger number on the bead string and then count on to the smaller num- ber 1 by 1 to find the answer.	12 + 5 = 17 10 11 12 13 14 15 16 17 18 19 20 Start at the larger number on the number line and count on in ones or in one jump to find the answer.	5 + 12 = 17 Place the larger number in your head and count on the smaller number to find your answer.
Regrouping to make 10. This is an essential skill for column addition later.	6 + 5 = 11 Start with the bigger number and use the smaller number to make 10. Use ten frames.	3 + 9 = Use pictures or a number line. Regroup or partition the smaller number using the part part whole model to make 10. $9 + 5 = 14$	7 + 4= 11 If I am at seven, how many more do I need to make 10. How many more do I add on now?
Represent & use number bonds and related subtraction facts within 20	2 more than 5.		Emphasis should be on the language '1 more than 5 is equal to 6.' '2 more than 5 is 7.' '8 is 3 more than 5.'

Objective &	Concrete	Pictorial	Abstract	Year
Strategy Adding multiples of ten	50= 30 = 20		20 + 30 = 50	2
	Model using dienes and bead strings	3 tens + 5 tens = tens 30 + 50 = Use representations for base ten.	70 = 50 + 20 40 + □ = 60	Z
Use known number facts Part part whole	20 Children explore ways of making numbers within 20	20 	□ + 1 = 16 16 − 1 = □ 1 + □ = 16 16 − □ = 1	20
Using known facts		$\begin{array}{cccc} \vdots & + & \vdots & = & \vdots \\ & & & & & \\ & & & & & \\ & & & & &$	3 + 4 = 7 leads to 30 + 40 = 70 leads to 300 + 400 = 700	È

Subtra Croor 8

Year

Objective & Strategy	Concrete	Pictorial	Abstract
Subtract a 1- digit number from a 2-digit number.	Physically move counters on and off tens frame.	22-7= We can partition 7 into 5 and 2 and use this to bridge the 10 7 c^{5}	20—4 = 16 20 — 16 = 4
Subtract a 2-digit number and tens	47 – 20= Children take base 10 away.	I 2 3 4 5 6 7 8 9 0 I 12 12 12 14 15 16 17 18 14 20 I 12 13 31 32 33 34 35 56 37 8 64 64 65 67 8 64 65 67 8 64 65 67 8 64 65 67 8 64 65 66 67 8 64 65 66 67 8 64 67 7 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 78 <td>47 - 40 = 7 47 - 30 = 17 47 - 20 = 27 - 5 6 - 3 0 - 3 0</td>	47 - 40 = 7 47 - 30 = 17 47 - 20 = 27 - 5 6 - 3 0 - 3 0
Subtract two 2 digit numbers	47 – 25= Children take base 10 away. For bridging 10 children exchange 1 ten for 10 ones.	Tens Ones IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Objective & Strategy	Concrete	Pictorial	Abstract
Repeated addition	Use different objects to add equal groups	Use pictorial including number lines to solve prob There are 3 sweets in one bag. How many sweets are in 5 bags altogether? 3+3+3+3+3 = 15 0 0 0 0 0 0 0 0 0 0 0 0 0	Write addition sentences to describe objects and pictures. $\underbrace{\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
Understanding ar- rays	Use objects laid out in arrays to find the an- swers to 2 lots 5, 3 lots of 2 etc.		Children record repeated addition 5 + 5 + 5 + 5 = 20 OR 4 + 4 + 4 + 4 + 4 = 20

Objective & Strategy	Concrete	Pictorial	Abstract
Doubling	Model doubling using dienes and PV counters.	Draw pictures and representations to show how to double numbers	Partition a number and then double each part before recombining it back together. 16 16 10 6 12 12 12 12 12 12 12
Counting in multiples of 2, 3, 5 and 10	Count the groups as children are skip counting, children may use their fin- gers as they are skip counting. Use bar models. 5+5+5+5+5+5+5+5=40	Number lines, counting sticks and bar models should be used to show repre- sentation of counting in multiples.	Count in multiples of a number aloud. Write sequences with multiples of numbers. 0, 2, 4, 6, 8, 10 0, 3, 6, 9, 12, 15 0, 5, 10, 15, 20, 25 , 30

Objective & Strategy	Concrete	Pictorial	Abstract
Multiplication is commutative	Create arrays using counters and cubes and Numicon.	Use representations of arrays to show different calculations and explore commutativity.	12 = 3×4 12 = 4×3 Use an array to write multiplication sentences and reinforce repeated addition. 00000 5+5+5=15 3+3+3+3+3=15 $5 \times 3 = 15$ $3 \times 5 = 15$
Using the Inverse This should be taught alongside division, so pupils learn how they work alongside each other.		$ \begin{array}{c} 8\\ 4\\ 2\\ \hline 8\\ \hline 8\\ \hline 8\\ \hline 8\\ \hline 9\\ \hline 9$	2 x 4 = 8 4 x 2 = 8 8 \div 2 = 4 8 \div 4 = 2 8 = 2 x 4 8 = 4 x 2 2 = 8 \div 4 4 = 8 \div 2 Show all 8 related fact family sentences.

Objective and Strategy	Concrete	Abstract	Pictorial
Finding 1⁄2	Using real objects showing children how they can be cut into halves.	Shading or splitting shapes into halves.	Share each quantity into 2 equal
Finding ¼		Shading or splitting shapes into ¼	Share each quantity into four equal groups. There are cakes. There is cake in each quarter. A quarter of is

Objective and Strategy	Concrete	Pictorial	Abstract
Finding 1/3		Shading or splitting shapes into thirds. Shade $\frac{1}{3}$ of each shape. Finding thirds of amounts	Use the cubes to make three equal groups. There are cubes altogether. One third of is of is
Finding ¾		Shading or splitting shapes into 3/ 4 Finding 3/4 of amounts.	Amir shares 12 beanbags into 4 equal groups. Use the image to complete the sentences. There are bean bags altogether. Three quarters of is
Finding a fraction of a number.	Sharing cubes, counters, objects into the equal groups. ½ of 6=	$\frac{1}{2} \circ f = 3$	$\frac{1}{2} \text{ of } 4 = \boxed{\frac{1}{2} \text{ of } 40} = \boxed{\frac{1}{2} \text{ of } 60} = \boxed{\frac{1}{2} \text{ of } 60} = \boxed{\frac{1}{2} \text{ of } 80} = \boxed{\frac{1}{2} \text{ of } 80} = \boxed{\frac{1}{2} \text{ of } 80}$ Children to take note of numerator and denominator

Equivalence of ½ and 2/4	Using strips of paper	Shade one half and two quarters of each shape. 1/2 = to 2/4	